CHAPTER 3

Fisherian theory

3.1 Introduction

There are alternatives to the Neyman—Pearson formulation of the
problem of testing statistical hypotheses. Although it is important
that we recognize and understand the differences between the
various formulations, there is no standard terminology to help us.
Many authors have distinguished between what we are calling
Neyman—Pearson tests and tests that have a different form and
purpose, often calling the latter significance tests and usually citing
R.A. Fisher as a particularly influential developer or proponent.
Although Fisher was not the originator of significance tests, we call
them ‘Fisherian’ because of his consistent emphasis on the distinction
between the problems addressed by the Neyman—Pearson theory of
hypothesis testing and problems of evidential interpretation of
scientific data, for which significance tests are intended. We will
draw a further distinction, describing two varieties of significance
test, both of which seem to have been advocated by Fisher. The
first we will call p-value procedures, and will consider in sections
3.2-3.4. These are prominent in the statistical analyses used in
science. The second variety, also influential in scientific applications,
we call rejection trials. These are particularly interesting because they
link statistical hypothesis testing directly to formal logic and to the
philosophy of science; they will be discussed in section 3.5.

Later in this chapter we describe how the use of significance tests
to measure evidence leads to a popular evidential interpretation of
confidence intervals. We also consider briefly the general issue of
alternative hypotheses in science.

3.2 A method for measuring statistical evidence: the test of significance

Statistical hypothesis tests, as they are most commonly used in
analyzing and reporting the results of scientific studies, do not
proceed as envisioned in the Neyman—Pearson theory, with a choice
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62 FISHERIAN THEORY

between two specified hypotheses being made according to whether or
not the observations fall into a pre-selected critical region. A more
common procedure is described by Cox and Hinkley (1974, p. 66):

Let ¢ = #(x) be a function of the observations and let T = #(X) be the
corresponding random variable. We call T a test statistic for testing H,
if the following conditions are satisfied:

(a) the distribution of ¢ when Hp is true is known at least
approximately . . .

(b) the larger the value of # the stronger the evidence of departure from
H, of the type it is required to test. ..

For given observations x we calculate #,,, = #(x), say, and the level of
significance pgyps by
Pobs = pr(T 2 lobs; HO)'
The result of this procedure is not a decision to choose one hypoth-
esis or another, but a number, p., called the level of significance, or
p-value; the procedure is called a significance test.

For example, to test the hypothesis H, that the probability of
success is one-half on each of 20 independent trials we might use
as a test statistic 7" the total number of successes. When Hj, is true
this statistic has a known probability distribution (binomial), and
large values are evidence supporting hypotheses that specify a
greater success probability over Hy. If we observe 14 successes
then the p-value is Pr(T > 14) = 0.06.

An essential component of significance tests is a concept that did
not appear in the Neyman—Pearson theory of hypothesis testing, the
concept of strength of evidence. A p-value is supposed to indicate
‘the strength of the evidence against the hypothesis’ (Fisher, 1958,
p. 80), with conventional interpretations as described by Burdette
and Gehan (1970, p.9):

Reasonable interpretations of the results of significance tests are as
follows:

Significance Level of Data Interpretation

Less than 1 per cent Very strong evidence
against the null hypothesis

1 per cent to 5 per cent Moderate evidence against the -
null hypothesis

More than 5 per cent and less Suggestive evidence against

than 10 per cent the null hypothesis

10 per cent or more Little or no real evidence

against the null hypothesis.
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Another difference between hypothesis testing, in the sense of
Neyman and Pearson, and significance testing is the role of alterna-
tive hypotheses: Neyman—Pearson tests are for choosing between
two hypotheses, whereas significance tests are for measuring the evi-
dence against one, the null hypothesis. Alternatives to the null
hypothesis are often acknowledged to play a part in significance
tests, as in Cox and Hinkley’s (1974, p. 66) implicit reference to an
alternative in their condition that ‘the larger the value of ¢ the
stronger the evidence of departure from H, of the type it is required
to test’ (emphasis added). But alternative hypotheses do not have an
essential explicit role analogous to the one they play in Neyman—
Pearson theory. In fact, many authorities maintain that significance
tests’ freedom from dependence on explicit alternative hypotheses is
essential in some important applications (such as ‘goodness of fit’
tests):

Let us try the simple single hypothesis first. If the data do not fit that,

_ then it is worth while going ahead [and constructing alternative
hypotheses]. If it is consistent with the data let us not waste our
time. (Barnard, in Savage, 1962, p. 85)

Box (1980) has defended this position more recently.

Here is a summary of some of the differences between these two
approaches to testing hypotheses about the distribution of a
random variable X

Neyman—Pearson hypothesis Significance tests ( p-value
tests procedures)
Purpose:

To choose one of two specified  For a single hypothesis H, to

hypotheses, H; and H,, on the  measure the evidence against H

basis of an observation X = x.  represented by an observation
X =x.

Elements:

1. Two hypotheses (families of 1. One hypothesis H, called the

probability distributions) H,
and H,.

2. A test function §(x) that
specifies which hypothesis to
choose when X = x is
observed: if 6(x) = 1 we
choose Hy, if §(x) =2 we
choose H,.

‘null’ hypothesis.

2. A real-valued function #(x)
that gives an ordering of
sample points as evidence
against H: t(x;) > t(x,)
means that x; is stronger than
X, as evidence against H.
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3. Result is a decision or action, 3. Result is a number, the
‘Choose H;’ or ‘Choose H>’. significance level, or p-value,
interpreted as a measure of
the evidence against H; the
smaller the p-value the
stronger the evidence.

The distinction between Neyman—Pearson tests and significance
tests is not made consistently clear in modern statistical writing
and teaching. Mathematical statistical textbooks tend to present
Neyman—Pearson theory, while statistical methods textbooks tend
to lean more towards significance tests. The terminology is not
standard, and the same terms and symbols are often used in both
contexts, blurring the differences between them. For example,
descriptions of Neyman—Pearson theory often refer to the size, or
Type I error probability, as the ‘significance level’.

A further source of confusion is that within the Neyman—Pearson
framework it is sometimes recommended that the experimenter
should report, not the result of testing H, versus H, at a pre-
selected Type I error level o, but the smallest value of a that
would have led to rejection of H;. This enables the reader who
prefers a different Type I error level, say o, to perform his own
test, rejecting H; (choosing H,) if the reported o is smaller than
his ¢/. Such a reported o is mathematically equivalent to a p-value
(and is sometimes called by that name). But this does not make
the procedure into a significance test, which is defined, not simply
by what number is calculated, but by what that number is supposed
to mean. As we saw in sections 2.3 and 2.4, Neyman was quite right
in his insistence on a narrow behavioral, or decision-making, inter-
pretation of his theory — evidential interpretations are generally
invalid.

The key difference between Neyman—Pearson tests and signi-
ficance tests is in their purpose. Neyman—Pearson tests are rules
for choosing between alternative actions, while significance tests
purport to measure evidence. That is, Neyman—Pearson tests
address the second of the physician’s three questions in Chapter 1,
‘What should I do?, while significance tests address the third,
‘How should I interpret these observations as evidence?. In his
section on ‘The simple test of significance’, Fisher (1956, p.42)
complained that the Neyman-Pearson view ‘that the purpose of
the test is to discriminate or “decide” between two or more
hypotheses’ had ‘greatly obscured’ the understanding of tests.
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He then offered

a clear view of the nature of a test of significance applied to a single
hypothesis by a unique body of observations.

Though recognizable as a psychological condition of reluctance, or
resistance to the acceptance of a proposition, the feeling induced by a
test of significance has an objective basis in that the probability state-
ment on which it is based is in fact communicable to, and verifiable by,
other rational minds. The level of significance in such cases fulfils the
conditions of a measure of the rational grounds for the disbelief it
engenders.

3.3 The rationale for significance tests

Why should a small p-value be interpreted as signifying strong
evidence against the hypothesis? Barnard (1967, p. 32) explains:

The meaning of ‘H is rejected at significance level o’ is ‘Either an event
of probability o has occurred, or H is false,” and our disposition to
disbelieve H arises from our disposition to disbelieve in events of
small probability.

This echoes Fisher’s (1959, p.39) explanation — after calculating,
under a random distribution hypothesis, that the probability of
the event observed, or a more extreme event, was about 1/33 000,
he proposed that this probability

is amply low enough to exclude at a high level of significance any
theory involving a random distribution.

The force with which such a conclusion is supported is logically that
of the simple disjunction: FEither an exceptionally rare chance has
occurred, or the theory of random distribution is not true.

According to the Fisher—Barnard explanation, significance tests
rest on some principle like the following:

Law of improbability: If hypothesis A implies that the probability that a
random variable X takes on the value x is quite small, say p,4(x), then
the observation X = x is evidence against 4, and the smaller p 4(x), the
stronger that evidence.

More recently Cox (1977, p. 53) has cited this law (‘the smaller is
the probability under Hj, the stronger is the evidence against Hy’) as
the basis for significance tests in some circumstances. But the law of
improbability has attracted criticism as well as support. Some have
observed that it appears to be unacceptably hard on null hypotheses.
Suppose, for example, that we have a computer program intended to
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generate standard normal deviates. Consider the null hypothesis
that the program is operating correctly. Now consider the evidence
in a single observed output, X = x. Because the hypothesis implies
that the probability of any single point is zero, the law of improb-
ability would imply that whatever value, x, is produced, it is over-
whelming evidence that the program is not working properly. The
problem is not restricted to continuous distributions — if X is
intended to have a Bin(n,1) distribution then the maximum prob-
ability on any outcome is roughly (2/1111:)1/ 2 so that if n is large
then no matter what value x is observed, it will be judged to be
strong evidence against the (true) binomial distribution hypothesis.
This is the point that Hacking (1965, p.82) made in discussing
Fisher’s argument quoted above: ‘if Fisher’s disjunction had any
force, we should always have to exclude any hypothesis like that
of random distribution, whatever happened. So it has no force’.

The binomial distribution assigns greater probability to values of
x near n/2. Although the absolute probabilities are all small when n
is large, the relative probabilities are not, and the ratio of the
maximum probability to the minimum, which occurs at both
x=0 and at x =n, is quite large, roughly 2"(2/nm)"/%. Thus
although all possible outcomes have low probability under the
hypothesis, some have much lower probabilities than others. To
accommodate this phenomenon, we might try a modified version
of the law stating that it is low probability relative to other outcomes
that makes a given outcome evidence against a hypothesis.

Law of improbability II: If hypothesis 4 implies that the probability
that a random variable X takes on the value x is small compared to
the probability of another value x', p4(x) < p4(x"), then the observa-
tion X =x is evidence against 4, and the smaller the ratio
pa(x)/p4(x"), the stronger the evidence.

Law II is unsatisfactory on various counts, one of which is that
it leaves some important hypotheses exempt from unfavorable
evidence. Suppose X represents a series of » Bernoulli (success or
failure, coded 1 or 0) trials, and consider the hypothesis that the
trials are independent with common probability of success equal
to one-half. Under this hypothesis every possible outcome is a
series of n zeroes and ones, and they all have the same probability
of occurrence, (3)". Thus for every pair of possible outcomes, x
and x’, p4(x)/p4(x") = 1, indicating evidence of no strength at all;
no outcome is less probable than any other, so none is evidence

against the hypothesis.
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Maybe we need to bring the ‘more extreme’ outcomes into the
analysis. Since the occurrence of an event whose probability under
H is small is interpreted as evidence against H, with the strength
of evidence growing as the probability shrinks, the outcomes that
are ‘as extreme or more so’ are apparently just those outcomes
whose probabilities under H are as small or smaller. Suppose we
try to state the law in terms of the probabilities of outcomes ‘as
extreme or more so’ than the one observed:

Law of improbability III: If hypothesis 4 implies that the probability
that a random variable X takes on the value x is p,(x) and if the
sum S(x) of the probabilities of all values whose probabilities are
less than or equal to p,(x) is small, then the observation X = x is
evidence against 4, and the smaller the sum S(x), the stronger the
evidence.

But law III also fails in the simple case of a sequence of indepen-
dent Bernoulli trials with success probability one-half. Since all
possible outcomes have the same probability, p,(x) = (1)", for
every one S(x) = 1, again indicating evidence of no strength at all.
According to law III only outcomes that are impossible under this
null hypothesis are evidence against it.

We will not continue to fiddle with the law of improbability,
trying to adjust our statement of it until we get it right. It cannot
be made right, as we already learned in section 1.4: it is not low
probability under 4 that makes an event evidence against 4 — it is
low probability under A relative to the probability under another
hypothesis B that makes it evidence supporting B over 4. And
then it is not evidence against 4, but evidence against A, vis-a-vis B.

Suppose 1 send my valet to bring my urn containing 100 balls, of
which only two are white. I draw one ball and find that it is white. Is
this evidence against the hypothesis that he has brought the correct
urn? And is p =0.02 a proper measure of the strength of this
evidence? Suppose that I keep in my urn vault two urns, one with
two white balls and another, identical in appearance, that contains
no white balls. Now is my observation of a white ball evidence
that he has not brought the right urn? Fisher’s disjunction still
applies — either a rare event has occurred or the null hypothesis
(correct urn) is false. But although the observation of a white ball
is rare under the null hypothesis, it is even rarer under the alternative
(wrong urn). In this case, the observation is actually strong evidence
in favor of the null hypothesis. Of course, we might consider other
hypotheses as well. For example, if my valet likes to play tricks,
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68 FISHERIAN THEORY

we might consider the hypothesis that he has added some more white
balls to the urn. The evidence favors that hypothesis over the
‘correct urn’ null hypothesis by a factor that depends on how
many white balls he might have added.

The point again is that evidence is relative (as we saw in section
1.4) — whether it counts for or against one hypothesis can only be
determined with reference to an alternative (see Exercise 3.1). This
point has been made well and often for decades. Before the birth
of the Neyman—Pearson theory the inventor of the ¢-test, W.S.
Gosset, explained to Neyman’s coauthor, Egon Pearson, that an
observed discrepancy between a sample mean and a hypothesized
population mean

doesn’t in itself necessarily prove that the sample was not drawn
randomly from the population even if the chance is very small, say
.00001: what it does is to show that if there is any alternative hypothesis
which will explain the occurrence of the sample with a more reasonable
probability, say .05 . .. you will be very much more inclined to consider
that the original hypothesis is not true.

(Gosset [1926], quoted in Pearson, 1938)

So the Fisher—Barnard rationale for significance tests, as
expressed in the law of improbability, is wrong. There is, in fact,
no sound rationale for these tests. This is because they are incom-
patible with the law of likelihood. Specifically, significance tests
depend critically on how the probability distribution is spread
over unobserved points in the sample space (through their definition
in terms of outcomes ‘as extreme or more so’ than the one observed)
and are therefore incompatible with the law of likelihood’s impli-
cation of the ‘irrelevance of the sample space’ (section 1.11). This
point is pursued in the next section, where a conspicuous problem
with the interpretation of significance tests is also described. The
existence of such problems supports the above claim that the
reason why a plausible rationale for significance tests has not yet
been found is that none exists.

3.4 Troubles with p-values

Let us look at the role of outcomes ‘as extreme or more so’ in
significance tests. In problems where there is a well-defined
alternative hypothesis, we can certainly identify such outcomes: if
/1 and f, are densities corresponding to the null and alternative
distributions respectively, and if x; is the observation, then the set
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{x; f2(x)/f1(x) = fa(x0)/f1(x0)} = S(xp) consists of all the outcomes
that are ‘as extreme or more so’ compared to x;. These are the
outcomes that would give a likelihood ratio supporting H, over
H, as great as or greater than the ratio associated with x;.

The p-value, Pr(S(xy)), consists not only of the probability of
what was observed (x;), but also of the probabilities of all the
more extreme outcomes that did not occur. But a proper measure
of strength of evidence should not depend on the probabilities of
unobserved values. To see this, recall the example in section 1.10,
where 20 tosses were made with a coin whose probability of
heads (success), 6, is unknown. The result is reported in a code
that is known to you; I, on the other hand, know only the code
word for ‘6’. If the number of heads observed is six, then you and
I obtain precisely the same evidence about 6. Thus if we both con-
sider H;:0 = 0.5 and an alternative asserting that the proportion
is somewhat lower, say H,:6 =0.3, then your prior probability
ratio, Pr(H,)/Pr(H;), and mine will both be increased by the same
factor, 5.18. But our p-values for testing H; versus H, do not agree.
Yours is p;(X =6)+p (X =5)+ ... +p;(X =0) =0.06. On the
other hand, since I can observe only ‘6’ or ‘not-6’, the observed out-
come is the most extreme possible one for me, and my p-value is just
its probability, p;(X = 6) = 0.04. The p-values assert (incorrectly)
that the outcome (six heads in 20 tosses) is stronger evidence against
H, (in favor of H,) for me than it is for you.

The significance-test approach to measuring the evidence is wrong
because its dependence on the sample space leads to different
answers in situations where the evidence is the same. That is, it
violates the principle of the ‘irrelevance of the sample space’ (section
1.11). This becomes even clearer if we provide some more details
about this experiment. It turns out that you have memorized only
the code-word for ‘6°. If any other result had occurred, you would
have had to consult your code-book to find how many heads had
been observed. Now, long after the experiment has been completed
and the p-values have been published, we are storing some bent coins
in your vault and we happen to notice that your code-book is
missing.

So your situation was actually the same as mine — if X = 4 had
occurred you could have recognized it only as ‘not-6’. Therefore
your sample space was the same as mine, {6, not-6}, and your calcu-
lated p-value, 0.06, is wrong. You conscientiously draft a letter to the
journal where your result was published, apologizing for your error
and reporting the corrected p-value, 0.04. But then your secretary,
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when he sees the letter, sheepishly confesses that he threw away the
code-book while tidying up the vault. Now the plot thickens. If he
threw the book away before the outcome ‘six successes in 20
tosses” was reported, then the appropriate p-value is the corrected
one; but if the clean-up took place later, so that the code-book
was still available when it might have been needed (but was not),
then your sample space was {0,1,...,20} after all, and so your
original p-value is still valid.

This is clearly silly — for the data actually observed, for the
evidence actually obtained, the code-book was not needed. The
evidence about 4, unlike the p-value, does not depend on when the
book disappeared — that is, it does not depend on which sample
space, {0,1,...,20} or {6,n0t-6}, you were sampling from when
X = 6 was observed. (This example is a descendant of one con-
structed by Pratt (1961) that has figured prominently in modern
discussions of the foundations of statistical inference.)

There is a significant piece of indirect evidence that something is
seriously wrong with significance tests. According to the widely
used ‘Reasonable interpretations of the results of significance
tests’ described by Burdette and Gehan, and quoted earlier, a
given p-value has a more or less fixed meaning. For example, a p-
value between 1% and 5% is supposed to indicate ‘moderate
evidence against the null hypothesis’; a value less than 1% indicates
‘very strong evidence’. This concept, that equal p-values represent
equal amounts of evidence, at least approximately, was named the
‘a-postulate’ by Cornfield (1966). Fisher (1934, p. 182) states it as
follows:

It is not true...that valid conclusions cannot be drawn from small
samples; if accurate methods are used in calculating the probability
[the p-value], we thereby make full allowance for the size of the
sample, and should be influenced in our judgement only by the value
of the probability indicated.

Berkson’s (1942) statement was only slightly less forceful: ‘the
evidence provided by a small p correctly evaluated is broadly
independent of the number in the sample’. The central role of signi-
ficance tests in many research areas rests on the a-postulate — results
with a p-value between 0.01 and 0.05 are flagged with an asterisk and
declared to be ‘statistically significant’, while those with a p-value
smaller than 0.01 are given two asterisks and declared ‘highly
significant’. The acceptability of a research report for publication
often depends on whether key results are ‘significant’ or not.
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But the a-postulate is wrong. In their preface to the New
Cambridge Elementary Statistical Tables, Lindley and Scott (1984,
p. 3) explain:

the interpretation to be placed on the phrase ‘significant at 5%’

depends on the sample size: it is more indicative of the falsity of the
null hypothesis with a small sample than with a large one.

Thus a given p-value does not have a fixed meaning. If two experi-
ments that are identical except for their sample sizes produce results
with the same p-value, these results do not represent equally strong
evidence against the null hypothesis — the evidence is stronger in the
smaller experiment.

Ten of the world’s most influential applied statisticians co-
authored a paper in which they, too, explained that the a-postulate
is false: ‘A given p-value in a large trial is usually stronger evidence
that the treatments really differ than the same p-value in a small trial
of the same treatments would be’ (Peto et al., 1976, p. 593). Their
interpretation is opposite that of Lindley and Scott.

Does a significance level of p = 0.04 indicate ‘moderately strong’
evidence against the null hypothesis, regardless of sample size, as the
a-postulate and common practice imply? Or does it indicate
stronger evidence in a small sample than in a large one, as Lindley
and Scott state? Or does it indicate stronger evidence in a large
sample as Peto et al. assert?

We should not be surprised to find that a statistical procedure that
purports to measure evidence, but in a way incompatible with the
law of likelihood, is mired in paradox and controversy (Royall,
1986; see also Morrison and Henkel, 1970).

3.5 Rejection trials

We have contrasted two ways to formulate statistical hypothesis-
testing problems. The one developed by Neyman and Pearson
addresses problems of choosing between two hypotheses, avoiding
our central question of how to interpret statistical data as evidence.
The other aims directly at out target — it seeks to measure the
strength of evidence — but misses the mark. Neither of these
formulations seems to capture the spirit of the definition given in
the textbook from which many of today’s practicing statisticians
learned the basics:

A procedure which details how a sample is to be inspected so that we
may conclude that it either agrees reasonably with the hypothesis or
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does not agree with the hypothesis will be called a test of the
hypothesis. (Dixon and Massey, 1969, p. 76)

Here a hypothesis test is seen as a decision procedure, a la Neyman—
Pearson theory, but with some important differences. Although
there are two possible conclusions or ‘actions’, only one hypothesis
is mentioned. And the phrase ‘either agrees reasonably with the
hypothesis or does not’ suggests that the two conclusions
correspond to definite evidential interpretations of the sample. In
many scientific applications of statistical tests a similar view is
adopted. While the objective is a rule or procedure for choosing
between two alternatives, as in the Neyman—Pearson paradigm,
the two alternatives are now stated in terms of a single hypothesis
— one is favorable to the hypothesis and the other unfavorable.
And an essential part of the reasoning is that choosing the unfavor-
able conclusion is justified only when the sample represents
sufficiently strong evidence against the hypothesis (as in the Dixon
and Massey scenario when the sample does not agree ‘reasonably’
with the hypothesis).

This third formulation views statistical hypothesis testing as a
process analogous to testing a proposition in formal logic via the
argument known as modus tollens, or ‘denying the consequent’:
if A implies B, then not-B implies not-4. We can test 4 by deter-
mining whether B is true. If B is false, then we conclude that 4 is
false. But, on the other hand, if B is found to be true we cannot
conclude that A is true. That is, 4 can be proven false by such a
test, but it cannot be proven true — either we disprove A or we
fail to disprove it. (This is the form of argument that is used in
mathematics when a false proposition is disproved by a counter-
example.) When B is found to be true, so that A survives the
test, this result, although not proving 4, does seem intuitively to
be evidence supporting 4. Whether this evidential interpretation
is correct or not is the subject of Hempel’s famous ‘paradox of
the ravens’, which is discussed in the Appendix. This form of
reasoning is at the heart of the philosophy of science, according to
Popper (see Putnam, 1974). Its statistical manifestation is in this
third formulation of hypothesis testing that we will call ‘rejection
trials’.

In applications of this third form of testing, a statistical hypothesis
Hy, the ‘nuil’ hypothesis, plays a role analogous to that of the
proposition 4 in that it can be disproved but not proved, rejected
but not accepted (Noether, 1971, p. 64). Fisher (1966, section 11.8)
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explains:

it should be noted that the null hypothesis is never proved or estab-
lished, but is possibly disproved, in the course of experimentation.
Every experiment may be said to exist only in order to give the facts
a chance of disproving the null hypothesis. ... The notion of an error
of the so-called ‘second kind,” due to accepting the null hypothesis
‘when it is false’...has no meaning with reference to simple tests of
significance. ..

The experimenter identifies a rejection region R that has small
probability under Hy, so that, if Hy is true, then the event ‘X is
not in R’ has high probability. This event, call it E, has a role
analogous to that of the proposition B in the modus tollens
argument. The analogy is imperfect because whereas 4 implied B
(with perfect certainty), H, implies E with high probability; that
is, if A4 is true then not-B is impossible, while if H, is true then
not-E (X in R) is merely improbable. But the form of reasoning in
the statistical version of the problem parallels that in deductive
logic: if Hy implies E (with high probability) then not-E justifies
rejecting Hy.

The term ‘test of significance’ is often used, as it was in section 3.2,
to refer to procedures that produce p-values for measuring the
evidence against a hypothesis. The same term is also used, as it
was in the above quote from Fisher’s Design of Experiments, to
refer to the (reject/do not reject) procedures just described. This
latter usage seems more apt — here the hypothesis is subjected to a
test. If it fails the test, it is rejected; if not, it survives, perhaps to
face another test. We use the terms ‘p-value procedures’ and
‘rejection trials’ to distinguish between these two visions of ‘tests
of significance’.

Rejection trials are similar to Neyman—Pearson procedures in
some respects. First, their objective is stated not as measuring the
evidence against the hypothesis, but as choosing between two
alternative actions, that is, choosing whether to reject the hypothesis
or not. And like Neyman-Pearson tests, they require that an
error rate o be selected and that a rejection region having
probability no greater than o under Hy be determined. Then Hj is
rejected if the observed value of the random variable falls in the
region. '

An important difference between rejection trials and Neyman—
Pearson tests becomes clear when the observation does not fall in
the rejection region: Neyman-—Pearson tests require choosing
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between two alternatives, Hy and Hj, so that the complement of
the region where Hy is rejected (and H; accepted) is the region
where H, is rejected (and H, accepted). Rejection trials, on the
other hand, are viewed as challenges to the single null hypothesis
H,. If the observation is in the rejection region, then Hj fails the
challenge and is rejected; otherwise the result is ‘Do not reject
Hy’. That is, the symmetry described by Neyman (1950, p.259),
‘it is immaterial which of the two alternatives...is labelled the
hypothesis tested’, is clearly missing in the trials described by
Fisher (1966, section I1.8) ‘in which the only available expectations
are those which flow from the null hypothesis being true’. Thus
Fisz (1963, p.426) writes: ‘In general, a significance test [rejection
trial] allows us to make decisions only in one direction’. If the
observation is in the rejection region ‘then H, may be rejected’,
but if not ‘then we can only state that the experiment does not
contradict Hy’.

We are concerned in this monograph with how statistical data are
interpreted as evidence. From this viewpoint the key difference
between Neyman—Pearson tests and rejection trials is not in the
existence, explicit or not, of an alternative statistical hypothesis,
nor in the relationship between such an alternative and the null
hypothesis. The key difference is that, unlike Neyman—Pearson
tests, rejection trials entail evidential interpretation of the observa-
tions. In these trials the rejection of Hj is justified when x falls in
the rejection region, it is said, because such observations ‘do not
agree with’ or ‘do not fit’ the hypothesis; they ‘are inconsistent
with’, ‘contradict’, or even ‘disprove’ it. If under H, the probability
of the rejection region is a, then the observations are said ‘to provide
sufficient evidence to cause rejection’, or to be ‘statistically signi-
ficant’ at level o. Whatever expression is used, the implication is
that observations in the rejection region are evidence against the
hypothesis; and observations in a rejection region with very small
« are very strong evidence.

In section 2.3 we considered an example of Cox (1958) in which
a coin toss is used to determine whether one or k iid. N(,0%)
observations will be made. There we looked at confidence intervals
for 8. However, Cox’s original example was stated in terms of
hypothesis tests, and it dramatizes the difference between
Neyman-Pearson tests and significance tests of the ‘rejection-trial’
variety. For simplicity let 0> =1, and suppose the sample size
when the coin falls tails is k£ = 100. The hypotheses are Hy: 8 =0
and Hy: 8 =1. Cox (1958) observed that if instead of using the
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coin toss we choose the sample size — say, #n — deliberately, then the
best (most powerful) test of size & = 0.05 is to reject Hy if and only if
X > 1.645/+/n. So again we consider procedure A4: if the coin falls
heads, so n =1, and X = x is observed, reject Hy if x > 1.645; if it
falls tails and 100 observations are made, reject H, if
X > 1.645/10. Procedure A consists of using, for each sample
size, 1 and 100, the best test of size 0.05. It has power
1x0.259 +1 % 1.000 = 0.63. But again we can do better. The
most powerful test of size 0.05 is given by procedure B: reject H,
if the coin falls heads and x> 1.282 or if it falls tails and
% > 5.078/10. Procedure B’s Type I error rate is £ x 0.100 +1 x
0.000 =0.05, the same as A’s, but its power is greater:
1% 0.389 41 x 1.000 = 0.69.

For one whose problem is accurately represented by the Neyman—
Pearson formulation, one who truly seeks to minimize the Type II
error rate subject to the constraint that the Type I rate not
exceed 0.05, it might come as a surprise that A4 is not the better
procedure. But B’s superiority, though surprising, is real, and
there is no reason to prefer 4. On the other hand, if the rejection-
trial formulation is more apt, procedure B is not better — in fact,
it is widely considered to be quite wrong. Cox (1958), calling
procedure A4 the conditional test and B the unconditional one,
wrote

Now if the object of the analysis is to make statements by a rule with
certain specified long-run properties, the unconditional test...is in
order. ...If, however, our objective is to say what we can learn from
the data we have, the unconditional test is surely no good. Suppose
that we know we have [only one] observation... The unconditional
test says that we can assign this a higher level of significance than we
ordinarily do, because if we were to repeat the experiment, we might
sample some quite different distribution [i.e. we might make 100
observations instead of only one].

Procedure B is ‘no good’ because when only one observation is
made it rejects at the 5% level whenever X > 1.282, and this is
evidently too liberal — to properly claim 5% significance we
should require, as 4 does, X > 1.645. Procedure B compensates
‘on the average’ by being overly conservative when n = 100,
rejecting Hy at the 5% significance level only on the basis of
quite extreme outcomes, /nX > 5.078. From the significance-
testing viewpoint, Procedure B will not do because the objective
is to characterize the evidence properly in each case; B allows
the claim of 5% significance on the basis of evidence that is too
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weak when »n =1, requiring evidence that is too strong when
n = 100.

3.6 A sample of interpretations

The distinctions between the three views of hypothesis testing that
we have considered are useful for understanding the rationale and
interpretation of statistical tests. It is quite possible, however, that
none of the three is a precise representation of what any one
statistical author means by ‘hypothesis testing’. The following
quotations certainly do not represent a single viewpoint. Instead
each author describes a slightly different vision, each drawing
elements from all of the three formulations that we have tried to
distinguish. But the point of view that we have called ‘rejection
trials’ is influential in each description.

In the testing process the null hypothesis either is rejected or is not
rejected. If the null hypothesis is not rejected, we will say that the
data on which the test is based do not provide sufficient evidence to
cause rejection. (Daniel, 1991, p. 192)

A nonsignificant result does not prove that the null hypothesis is
correct — merely that it is tenable — our data do not give adequate
grounds for rejecting it. (Snedecor and Cochran, 1980, p. 66)

The verdict does not depend on how much more readily some other
hypothesis would explain the data. We do not even start to take that
question seriously until we have rejected the null hypothesis.

... The statistical significance level is a statement about evidence . ..
If it is small enough, say p = 0.001, we infer that the result is not readily
explained as a chance outcome if the null hypothesis is true and we start
to look for an alternative explanation with considerable assurance.

(Murphy, 1985, p. 120)

If [the p-value] is small, we have two explanations — a rare event has
happened, or the assumed distribution is wrong. This is the essence
of the significance test argument. Not to reject the null hypothesis. ..
means only that it is accepted for the moment on a provisional basis.

(Watson, 1983)

Test of hypothesis. A procedure whereby the truth or falseness of the
tested hypothesis is investigated by examining a value of the test
statistic computed from a sample and then deciding to reject or
accept the tested hypothesis according to whether the value falls into
the critical region or acceptance region, respectively.

(Remington and Schork, 1970, p. 200)
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ridence that is too strong when Although a ‘significant’ departure provides some degree of evidence
against a null hypothesis, it is important to realize that a ‘nonsignificant’
departure does not provide positive evidence in favour of that hypoth-
esis. The situation is rather that we have failed to find strong evidence

against the null hypothesis. (Armitage and Berry, 1987, p. 96)
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If that value [of the test statistic] is in the region of rejection, the
decision is to reject Hy; if that value is outside the region of rejection,
the decision is that Hy cannot be rejected at the chosen level of signi-
ficance ... The reasoning behind this decision process is very simple.
If the probability associated with the occurrence under the null hypoth-
esis of a particular value in the sampling distribution is very small, we
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may explain the actual occurrence of that value in two ways; first we
may explain it by deciding that the null hypothesis is false or,
second, we may explain it by deciding that a rare and unlikely event
has occurred. (Siegel and Castellan, 1988, Chapter 2)

3.7 The illogic of rejection trials

The above quotes suggest that the rejection trial is a method for
determining when a given set of observations represents sufficiently
strong evidence against a hypothesis to justify rejecting that hypoth-
esis. But when it is given this interpretation the method defies the
rules of logic.

Consider the Bin(n, 6) model for X and the hypothesis Hy: 6§ = 1.
When the observed value is x, we are justified in rejecting Hy at level
a if Pro(X > x) < a/2. If, on the other hand, we are testing the
hypothesis Hy: 6 < %, our observation x is strong enough evidence
to justify rejecting if Pry(X > x) < @. Thus a value x for which
a/2 < Pro(X > x) < a represents strong enough evidence to justify
rejecting the composite hypothesis that either § = % orf < %, but it is
not strong enough evidence to justify rejecting the simple hypothesis
that @ =%. We may conclude (at significance level «) that both
¢ =1 and 6 <1 are false, but we may not conclude that § =3
alone is false. We may conclude ‘neither 4 nor B’ but we may not
conclude ‘not-A4’. Odd.

This interpretation of rejection trials makes no more sense if it
is expressed in terms of the alternatives to the hypotheses tested.
If, when we reject 6 =1, we are concluding that either § <1 or
0> %, then clearly this is justified by any evidence that justifies the
stronger conclusion that 8 > % That is, if the evidence justifies the
conclusion that A is true, then surely it justifies the weaker con-
clusion that either 4 or B is true. Rejection trials do not conform
to this logic.
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3.8 Confidence sets from rejection trials

Rejection trials provide the basis for an evidential approach to
defining and interpreting confidence sets. If we have for each
possible value of a parameter 6 a level-« test of significance (rejection
trial) of the hypothesis that the parameter equals that value, then we
can define a 100(1 — )% confidence set. This set consists simply of
all the values of § that would not be rejected by the corresponding
test. That is, if the hypothesis Hy: 8§ = 6, is not rejected on the
basis of the observation X = x, then 6, is in the set S(x). That this
procedure does indeed produce a 100(1 — )% confidence set
follows directly from the fact that for every 6, the random set
S(X) includes 6, if and only if a value of X is observed which
does not lead to the rejection of Hy: § = 6,, and the probability of
this, when H, is true, is at least 1 —a. Thus Pry(S(X) will
include ) > 1 — a for every 6, which is to say, S(X) is a valid
100(1 — )% confidence-set procedure.

This approach gives an explicit evidential interpretation to the
confidence set, which now consists of all the values of 8 that are
consistent with the observation X = x in the sense that this obser-
vation would not justify their rejection at significance level o.
Values excluded from the confidence set are those against which
X = x represents evidence strong enough to watrant rejection at
level a.

This interpretation is sometimes invoked in order to ‘make sense’
of a confidence set that seems paradoxical when interpreted in terms
of one’s confidence that it contains the true parameter value. A
popular example is the confidence set for a ratio of two normal
means (Exercise 2.3). The 95% confidence set can turn out to be
the whole real line. Since this set contains all possible values of the
ratio, it seems ridiculous to assign to it a confidence coefficient of
only 0.95 — we are actually 100% confident that it contains the
true ratio of means. The rejection-trial interpretation is attractive:
the confidence set excludes only those values against which we
have sufficiently strong evidence to justify rejection of the
corresponding hypothesis at the 5% level. Now in this example
the samples that give the entire line as the confidence set are those
in which the estimates of both numerator and denominator are
very close to zero. Such samples tell us very little about the ratio;
as Exercise 7.6 shows, they represent only weak evidence. They do
not justify our rejecting any of the possible values of the ratio.
All of the values are ‘consistent with the observations at the 5%
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level’, and this is what the (very large) confidence region correctly
shows.

The evidential interpretation of confidence sets that is provided by
the significance-testing (rejection-trial) approach is attractive, But it
is valid only if the evidential interpretation of rejection trials is valid.
And this is not the case, because the rationale for rejection trials
is the same as that for p-value procedures — it rests on Fisher’s
disjunction, as explained by Watson and by Siegel and Castellan
in the quotations in section 3.6. Rejection trials fail, as tools for
evidential interpretation of statistical data, for the same reasons
that p-value procedures fail. Rejection trials lead to different answers
in situations where the evidence is the same, just as p-value
procedures were shown to do in section 3.4. In terms of the urn
example discussed there, whether the coded report of six successes
in 20 tosses of the bent coin is or is not ‘significant at the 5%
level’ for testing Hy: 9:% depends on whether the code-book
would have been available if a different number of successes had
occurred. The immediate problem is the dependence of the signi-
ficance test procedures, of both the p-value and the rejection-trial
varieties, on the sample space. The underlying reason, explained in
section 3.3, is that the law of improbability is not tenable.

3.9 Alternative hypotheses in science

As we discussed in section 3.3, the law of likelihood applies to
pairs of hypotheses and suggests that a sound theory of evidence
in relation to a single statistical hypothesis is impossible. Unfortu-
nately, the use of significance-testing methodology has trained
many scientists as well as statisticians to think in terms of
evidence against single hypotheses, as illustrated in the quotations
in section 3.6. Since the problem can be formulated in terms of
one hypothesis and a test statistic (as in the description by Cox
and Hinkley in section 3.2), with no explicit alternative required,
it is easy to overlook the essential role played by alternative
hypotheses.

Are there statistical ‘null’ hypotheses that are scientifically impor-
tant? If so, they are rare. The reason is the familiar observation that
our statistical models are only approximations to real-world
phenomena and processes. The answer to the question ‘Is the null
hypothesis correct? is always the same — no! Does the odds ratio
equal 1?7 No. Does the regression coefficient equal zero? No. Are
the two distributions identical? No. If the purpose of experiments
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were to answer such questions, there would be no point in doing
experiments, since we already know the answers.

i Experiments like the following are sometimes cited as counter-
examples to the above claim. To test whether a subject is capable
of extrasensory perception (ESP), a random sequence of images is
generated but concealed from the subject. The images may be the
cards in a well-shuffled deck or a sequence of zeroes and ones
generated by a process such as tossing a coin. The subject is asked
to reproduce the sequence. Early experiments of this sort were
plagued by the possibility that subjects were given inadvertent
cues to the correct responses (via normal sensory channels) or
were able to cheat (Hansel, 1966). Let us assume that we can
eliminate these flaws in the experimental setup. If the subject has
no ESP ability then the number of terms that he correctly matches
has a simple probability distribution that becomes the null hypoth-
esis. Any departure from that distribution would show ESP ability.
For simplicity, suppose the images are generated by a sequence of
independent Bernoulli trials with probability § = % If the subject’s
success probability is anything different from 1, this is taken to reflect
ESP. If his probability is truly greater than %, this clearly means that
he is receiving some extrasensory information. But a probability less
than % means the same (and that he is misinterpreting the informa-
tion). Any departure from the null hypothesis that his number of
successes in 7 trials has a Bin(n,1) probability distribution proves
the existence of ESP. It seems that we really do want to answer
the question ‘Is the null hypothesis true?’. If it is not, then ESP exists.

The problem, of course, is that no one can generate a perfect
sequence of i.i.d. Bernoulli(}) trials. Certainly it cannot be done by
tossing a coin, for all coins are imperfect and the probability of
heads is never exactly one-half. Likewise, the subject who has no
ESP ability, but is simply guessing, cannot produce a perfect
sequence of i.i.d. Bernoulli(}) guesses. Then there is always some
probability of error in recording and transmitting the results. This
means that the null hypothesis is always false, whether or not the
subject has ESP ability. The Bin(n,]) probability distribution is
only an imperfect model for the number of matches observed in #
trials.

The key question then becomes ‘Does the probability distribution
differ from the Bin(n,}) by more than can be reasonably explained in
terms of the inevitable imperfections in the mechanism for generat-
ing the sequence of images, checking for matches, and recording the
results?’. This question refers not only to the null hypothesis but also




FISHERIAN THEORY

1ere would be no point in doing
w the answers.
are sometimes cited as counter-
test whether a subject is capable
a random sequence of images is
subject. The images may be the
a sequence of zeroes and ones
ssing a coin. The subject is asked
y experiments of this sort were
subjects were given inadvertent
ia normal sensory channels) or
6). Let us assume that we can
imental setup. If the subject has
f terms that he correctly matches
on that becomes the null hypoth-
ribution would show ESP ability.
s are generated by a sequence of
probability 6 = 1. If the subject’s
erent from J, this is taken to reflect
rter than J, this clearly means that
nformation. But a probability less
1¢ is misinterpreting the informa-
il hypothesis that his number of
) probability distribution proves
1at we really do want to answer
true?. If it is not, then ESP exists.
it no one can generate a perfect
s. Certainly it cannot be done by
imperfect and the probability of
_ikewise, the subject who has no
ising, cannot produce a perfect
ssses. Then there is always some
and transmitting the results. This
always false, whether or not the
n(n,1) probability distribution is
number of matches observed in n

‘Does the probability distribution
1an can be reasonably explained in
s in the mechanism for generat-
ng for matches, and recording the
»nly to the null hypothesis but also

EXERCISES 81

to alternatives. Results leading to rejection of the null hypothesis
at a very small p-value do not necessarily represent evidence for
ESP. If » = 100 million and x = 50.02 million successes are observed
then 2+/n(x — 0.5) = 4.0, giving a very small p-value, 0.000 03. These
observations are quite strong evidence for a success probability of
0.5002 versus 0.5000 (LR > 2900). But a difference this small, an
excess of two expected successes per 10000 trials, might well be
explained in terms of imperfections in the experiment, and at any
rate would appear to represent the absence of an empirically mean-
ingful ESP phenomenon.

The meaningful question, as explained by Gossett in the quote in
section 3.3, is not ‘Are the observations evidence against the null
hypothesis?” but ‘Are there scientifically meaningful alternative
hypotheses that are better supported?’.

3.10 Summary

Today’s statistical practice is directed by an informal blending of
Neyman—Pearson theory with concepts and interpretations that
are not a part of that theory. We call this approach Fisherian.
Scientific applications of hypothesis testing, for example, are usually
of a type so different from the procedures described by Neyman—
Pearson theory that they are given a special name, tests of
significance. There are actually two distinct types of significance
test, namely p-value procedures and rejection trials. Both explicitly
attempt to do what Neyman—Pearson theory does not — to quantify
the strength of statistical evidence. Significance tests fail in this
endeavor because they rest on the faulty foundation of the law of
improbability. Fisherian methods in general, as tools for represent-
ing and interpreting statistical data as evidence, fail for the same
reason — they rest on the law of improbability and violate the law
of likelihood.

Exercises

3.1 (a) Suppose you observe a random variable X and are
interested in the simple hypothesis Hy: X ~ Bin(100,0.5).
Is the observation X =37 strong evidence against
H,y? How about X = 50? Explain. [Some numbers that
you might want to consider are: Pry(X = 37) = 0.003,
Pro(X < 37) = 0.006; Pry(X = 50) = 0.080, Pry(X < 50)
= 0.540.]
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(b) Now suppose you learn that X was produced by making 100
draws from. an urn containing 100 balls, 50 black and 50
white, and counting the number of draws on which a
black ball was seen. The hypothesis Hj in (a) is true if the
draws were made with replacement. Is the observation
X =37 strong evidence against H, vis-a-vis the alternative
hypothesis H; stating that the draws were made without
replacement? How about X = 507

(c) Consider another alternative, H,, stating that the draws were
with replacement, but that only 25 of the 100 balls are black.
Is the observation X' = 37 strong evidence against Hy vis-g-vis
H,? [Pry(X = 37) = 0.002, Pry(X < 37) = 0.997]

Verify that for n observations i.i.d. N(9, 02), with o known, the
1/8 likelihood interval for @ is % + 2.039¢/n"/? and that this is a
95.9% confidence interval. Find the 1/32 likelihood interval and
its confidence coefficient.

One form of reasoning that is sometimes used in efforts to give
confidence intervals an evidential interpretation is as follows:
The fact that a confidence interval procedure rarely results in
the true value’s being excluded implies that when a value is
excluded, there is strong evidence that it is not the true one.
Use the example in Exercise 2.4 to show that this reasoning is
faulty.




